Chapter 17: Steams Computation with Console 651

Manipulator Action Performed Equivalent to
setw({int width) Sets the field width width
setprecision(int prec) Sets the floating-point precision precision
setfill (int fchar) Sets the fill character £ill
setbase(int base) Sets the conversion base

0: Base 10 is used for output

8: Use octal for input and output

10: Use decimal for input and output

16: Use hexadecimal for input and output

setiosflags(long flags) Sets the format flag setf
resetiosflags(long flags) | Resets the format flag unsetf

Table 17.5: C++'s predefined parameterized manipulators

Buffering

When a stream is buffered, each insertion or extraction does not have a corresponding 1/O operation to
physically write to or read data from a device. Instead, insertions and extractions are stored in a buffer
from which data is written or read in chunks.

In C++, it is possible to force data buffered in an output stream to be written. It is called flushing and
it ensures that everything stored in an output buffer has been displayed. In general, flushing is done
when interactive input is requested by the user, so that the program can be sure that information
displayed on the screen is completely up-to-date. The cout’s buffer can be flushed using the statement,

cout. flush() ;

A program can tie an input stream to an output device. In this case, the cutput stream is flushed
when any characters are fetched from the input stream. For instance, cin is automatically tied to cout
to be sure that everything has been physically displayed before any input occurs. The user defined
streams can be tied using the tie function as follows:

istream input;
ostream output;

input.tie(output);
The last statement forces the C++ /O system, to flush the object stream, output every time the fetch
operation is initiated using the object, input.
The parameterized manipulators are described below:

setw(int width): Sets the width of the output field specified by the integer parameter width. The
output field width is reset to 0 every time an output is performed using the << operator. When the
output field width is 0, normal output is done (without filling or aligning). Hence, use the se tw manipu-
lator to specify the field width before every output for which a particular field width is desired.

getprecision(int prec): Sets the precision used for floating point output. The number of
digits to be shown after the decimal point is given by the integer prec.

652 Mastering C++

setfill (int fchar): Sets thefill character to that specified in £char. The fill character is used
to fill (or pad) the empty space in the output field when the width of the output variable is less than the
width of the output field. The default fill character is the space character.

setbase (int base): Sets the conversion base according to the integer base, which can assume
any one of the following four values:

0: Base 10 is used for output;

8: Use octal for input and output.

10: Use decimal for input and output.

16: Use hexadecimal for input and output.

The base to be used for input is specified as a part of the input itself - inputs beginning with 0 are
treated as octal, those beginning with Ox are treated as hexadecimal. Otherwise, the base is assumed as
decimal.

setiosflags(long flags): The parameter f1ags can be any of the flags listed in i os stream
class. More than one flag can be set with the same manipulator by ORing the flags.

The statement
cout << setw(8) << 1234;
prints the value 1234 right-justified in the field width of 8 characters. The output can be left justified
using the statement,
cout << setw(8) << setiosflags(ios::left) << 1234;

The key difference between manipulators and the 1 os class interface functions is in their implemen-
tation. The ios member functions are used to read the previous format-state, which can be used to
know the current state or save for future usage, whereas, the manipulators do not return the previous
format state. The program foutput . cpp illustrates the use of some of the manipulators with output
streams.

// foutput.cpp: various formatting flags with the << operator
#include <iostream.h>
#include <iomanip.h>
void main ()
{
int x = 100;
cout << hex << x <<
float f = 122.3434;
cout << f << endl;
cout << setprecision{ 3);
cout << f << endl;
cout << setw(6) << setfill('0');
cout << setiosflags(ios::internal | ios::showbase);
cout << hex << x << endl;
cout << setiosflags(ios::scientific) << f << endl;

' ' << dec << x << endl;

)
Run

64 100
122.343399
122.343
0x0064
1.223e+02

Chapter 17: Steams Computation with Console 653

In main{), the statement
cout << hex << x << endl;

outputs 0x0064, since the field width 6 and the fill character ‘0" is filled between the base indicatoy ‘0x’
(due to ios::showbase) and the number 64 (padding like this occurs due to ios::internal being set).

The program payroll.cpp uses the manipulators for displaying numeric quantities for account.
ing purposes so that the decimal points are aligned in a single column.

// payroll.cpp: payroll like output example
#include <iostream.h>
#include <iomanip.h>
void main ()
{
float f1=123.45, £2=34.65, £3=56;
cout << setiosflags(ios::showpointlios::fixed)
<< setiosflags(ios::right);
cout << setw(6) << fl << endl;
cout << setw(6) << f2 << endl;
cout << setw(6) << f3 << endl;

}

Run

123.45
34.65
56.00

Setting the flag ios : : showpoint will display the point even though a floating point number has
no significant digits to the right of the decimal point (the variable £3). Setting ios: : fixed ensures
output in fixed point rather than in exponential notation. The decimal points happen to be aligned due
to two manipulators: setprecision(2)— show two digits after the decimal point and
setiosflags (ios: :right)— display output in right-justified manner.

// oct.epp: Usage of number-base manipulators with cin
#include <iostream.h>
#include <iomanip.h>
void main{()
{
int i;
// The statement below always interprets the input as octal digits
cout << "Enter octal number: ";
cin >> oct >> i;
cout << "Its decimal equivalent is ";
cout << i << endl;
//The base used by cin in the statement is decided at the time of input
cout << "Enter decimal number: ";
cin >> setbase(0) >> i;
cout << "Its output: ";
cout << i;

654 Mastering C++

Buni

Enter octal number: 111

Its decimal equivalent is 73
Enter decimal number: 0111
Its output: 73

Bun2

Enter octal number: 111

Its decimal equivalent is 73
Enter decimal number: 0x111
Its output: 273

In the cin statement
cin >> oct >> i;

data input is always interpreted as an octal number. So, if the input is 111, the output using the cout
statement here is 73. Whereas, in the statement

cin >> setbase(0) >> i;

if the input to the c in statement here is 111, then it is assumed to be a decimal number. If itis 011 1,itis
assumed as an octal number. Finally, an input such as 0x111 is assumed hexadecimal. So the output of
the last cout statement will be 111 in the first case, 73 in the second, and 273 in the third.

The programmat tab. cpp illustrates the use of manipulators and ios functions in formatting the
output.

// mattab.cpp: prints mathematical table having sqr, sqrt, and log columns
#include <iostream.h>
#include <iomanip.h>
#include <math.h>
// macro for computing square of a number
#define sqr(x) ((x)*(x))
void main ()
{
int num;
cout << “Enter Any Integer Number: *;
cin >> num;
COUL << Mmoo T T T T T T e e e - " << endl;
cout << setw(5) << "NUM" << setw(10) << *"SQR*;
cout << setw(15) << "SQRT" << setw(15) << "LOG" << endl;

COU Q= o o e e e " << endl;
cout.setf(ios::showpoint); // display trailing zeros

for(int i = 1; i <= num; i++)

{

cout << setw(5) << i
<< setw(10) << sqr(i)
<< setw(15) << setprecision(3) << sqgrt((double) i)
<< setw(15) << setprecision(4) <<setiosf1ags(ios::scientific)
<< log((double) i) << endl << resetiosflags(ios::scientific)

Chapter 17: Steams Computation with Console 655

Run
Enter Any Integer Number: 10

NUM SQR SQRT LOG
1 1 1.000 0.0000e+00
2 4 1.414 6.9315e-01
3 9 1.732 1.0986e+00
4 16 2.000 1.3863e+00
5 25 2.236 1.6094e+00
6 36 2.449 1.7918e+00
7 49 2.646 1.9459e+00
8 64 2.828 2.0794e+00
9 81 3.000 2.1972e+00

10 100 3.162 2.3026e+00

17.7 Custom/User-Defined Manipulators

An important feature of C++ streams is that they also work well with the user-defined manipulators as
they do with built-in manipulators. Hence, the users can design their own (customized) manipulators
to control the appearance of the output depending upon their taste and need. The syntax for creating a
custom manipulator is shown in Figure 17.4. In the syntax, manipulator is the name of the user-
defined manipulator. ‘

name of the user arguments for parame-
defined manipulator terized manipulator

Y

ostream & manipulator({ ostream & output, arguments_if_any)

ANG

...(manipulator code)

... manipulator caller and
return output; stream cascading object

Figure 17.4: Syntax of creating a custom manipulator

The program space3 .cpp creates and uses the user-defined manipulator sp that inserts space
into the output stream and flushes it. It eliminates the usage of messy statements such as,
cout << X << ' ' <<y << ' ' << z << 't << w << endl;
to output a series of variables separated by spaces, The statement can be written as,
cout << X << Sp << Y << Sp << Z << Sp << W << endl;

which appears more elegant and simple to use and understand.

656 Mastering C++

// spaced.cpp: custom built manipulator
#include <iostream.h>
// The user-defined manipulator
ostream & sp(ostream& os)
{
os << ' ' << flush; // or cout << ' ' << flush
return os;
}
void main{()
{
int x=1, y=2, z=3, w=4;
cout << X << Sp << Yy << Sp << Z << Sp << W << endl;

}

Run
1234

In the above program, the function
ostream & sp(ostream& os)

defines a manipulator called sp that prints a single space and flushes the same to console for immediate
display without buffering.

Another interesting use of manipulators is demonstrated in the program currency.cpp. It de-
fines manipulators for prefixing the currency symbol to an item cost depending on the currency used by
the country which has manufactured the item.

// currency.cpp: custom built manipulator for currency unit representation
#include <iostream.h>
// currency in Indian rupees
ostream & rupee(ostream& os)
{
0s << "Rs. " << flush;
return os;
}
// currency unit in US ‘dollar
ostream & dollar(ostream& os)
{
cout << "US$ " << flush;
return os;
}
void main()
{
char iteml(25], item2([25];
unsigned int costl, cost2;
cout << "Item Sales in India..." << endl;
cout << "Enter Item Name: *;
cin.getline(iteml, 25);
cout << "Cost of Item: ";
cin >> costl;
cout << *Item Sales in US..." << endl;

Chapter 17: Steams Computation with Console 657

cout << "Enter Item Name: ";
cin.ignore() ;

cin.getline(item2, 25);
cout << "Cost of Item: *;
cin >> cost2;

cout << "Item Cost Statistics..." << endl;
cout << "Item Name: " << iteml << endl;
cout << "Cost: " << rupee << costl << endl;
cout << "Item Name: " << item2 << endl;
cout << "Cost: " << dollar << cost2 << endl;
}
Run
Item Sales in India...
Enter Item Name: PARAM Supercomputer

Cost of Item: 55000

Item Sales in US...

Enter Item Name: CRAY Supercomputer
Cost of Item: 40500

Item Cost Statistics...

Item Name: PARAM Supercomputer
Cost: Rs. 55000

Item Name: CRAY Supercomputer

Cost: US$ 40500

Standard Manipulators Implementation

The previous example was easy, since the manipulator did not accept any parameters in the output
statement. The function that overloads the << operator to accept manipulators merely needs to call the
manipulator with the output stream object (cout in this case). Manipulators accepting parameters
initiates many actions. Consider the manipulator declared in iomanip.h header file, setw(int),to
illustrate the implementation of manipulators. The declaration of this manipulator is:

ostream & setw(ostream&, int);
But in the output statement, setw is called with only one integer argument:

cout << setw(6) << i;
Another function (also called setw) is needed that accepts only one argument of type integer. It does
not know which output object needs to have its field-width set. Assuming the output object as cout
will unduly restrict its use (For instance, it would not be possible to use it directly with files). To resolve
this impasse, the following solution is used. A class called omanip_int is declared. It has two private
members; a pointer to function (the actual manipulator) and an integer that specifies the width. Ithas a
constructor that sets these members, and a friend function that overloads the << operator and calls the
actual manipulator.
class omanip_int

{
private:
ostream& (*f) (ostream&, int); // Pointer to the actual manipulator
int w; // Width to be set

658 Mastering C++

public:
//Constructor .
omanip_int(ostream& (*tf) (ostream&,int), int tw)
{ £ = tf;
w = tw;
}
// overloading stream output operator
friend ostream& operator << (ostream& os, omanip_int o)
{

return o.f(os, o.w); //Call the actual manipulator.
}i

Two more functions are now required; one that actually manipulates the stream, and another that is

invoked from the output statement. They are declared as follows:
//Actual manipulator
ostream& setw(ostreams os, int w)
{

gs.width(‘w)i

return os;
}
// This is called first from the output statement.
// It accepts an integer and returns an instance of class omanip_int
omanip_int setw(int w)
{

return omanip_int(setw, w); // returns nameless object

}

Now, the statement
cout << setw(6) << i;
will first call the second setw manipulator that remembers the width passed in an instance of the class
omanip_int. The actual function to be called is also recorded here. This instance is returned. The
first << above now has the return value of setw(6) - an instance of omanip_int on the right, and
cout on the left. The overloaded function (defined in the class omanip_int) is invoked, which in turn
calls the actual manipulator. The same concept can be utilized while implementing the user-defined
manipulators.

Parameterized Custom Manipulators

Most manipulators do not accept parameters and are simple to use. Sometimes it is necessary to pass
data to the manipulators, however, as with the built-in manipulator setw (int). The program pre-
sented in pmani . cpp, implements a manipulator that accepts three arguments - width, precision, and
fill character. The manipulator is useful as a shorthand notation for setting the above parameters to
output floating point variables with different width, precision, and fill characters.

// pmani.cpp: Parameterized Manipulator

#include <iostream.h>

#include <iomanip.h>

// output manipulator taking arguments of type int, int, char

Chapter 17: Steams Computation with Console 659

class my_manipulator
{
private:
int width, precision;
char fill; ‘
public:
//Constructor
my_manipulator (int tw, int tp, char tf):width(tw),precision(tp), fill(tf)
{}
//Overloaded << operator
friend ostream & operator << (ostream& 0Os, my_manipulator object);
}: ,
//Actual manipulator called by overloaded operator << friend function
ostream & operator << (ostream& os, my_manipulator object)
{
os << setw(object.width) << setprecision(object.precision) \
<< setfill(object.fill);
0s << setiosflags(ios::showpoint|ios::right);
return os;
}
//Function called first from the output statement
my_manipulator set_float(int w, int p, char f)
{
return my_manipulator(w, p, £)3 // nameless object is returned
}
void main()
{
float £1=123.2734, £2=23.271, £3=16.1673;
// set_£float accepts three parameters-width, precision and fill character
cout << set_float(10, 3, '*') << f1 << endl;
cout << set_float(9, 2, '~') << £f2 << endl;
cout << set_float(8, 3, '#') << f3 << endl;

}

Run

**%123.273
~nnn23.27
##16.167
In main (), the statement
cout << set_float(10, 3, '*') << f1 << endl;
has the call to the normal function as,
set_float(10, 3, '*')
which in turn creates the nameless object of the classmy_manipulator (and initializes its members)
and returns the same. Thus, the above output statement effectively becomes,
cout << my_manipulator(set_float, 10, 3, '*') << fl << endl;
The class my_manipulatorisa friend of the overloaded operator function and hence, the mutated
output statement invokes the function,
friend ostream& operator << (ostream& os, my_manipulator object)

660 Mastering C++

which actually sets the format for the output’s appearance and returns the reference to cout so that the
item that immediately follows it will be printed in the desired format. After printing one item, format
specification will immediately revert to the default,

17.8 Stream Operators with User-Defined Classes

The elegance of streams is that, it can, not only be used with built-in C++ data types, but also with user-
defined classes. It requires overloading of the stream insertion and extraction operators. In case of the
overloaded friend stream operator << function, the ostream & is considered as the first argument.
The return value of this friend function is of type ostreams. Similarly, for overloading the friend
stream operator >> function, the i st reams is considered as the first argument. The value returned by
this friend function is of type istreams. In both the cases, a reference to an ebject of the class to,
which this operator function is a friend is taken as the second argument. After processing the data
members of the second argument, the first argument i st ream object would be returned. Overloading
of stream operators to support user-defined data types has been discussed earlier in detail in the
chapter on Operator Overloading.

The insertion operator, << has been overloaded to have an instance of ostream (or one of its
derived classes) on the left and an instance of any basic variable type on the right. Similarly, the >>
operator is overloaded to have an instance of i st ream class on the left and any basic variable type on
the right.

Insertion Operator << Overloading

Consider the prototype of the overloaded << operator to gain a better understanding of streams
computation. For instance, the prototype of insertion operator overloaded to display integer data is as
follows:

ostream & operator << (ostream&, int);
Recall that, effectively cout is an instance of class ost ream. Hence, if the variable num is an integer,
then, the statement

cout << num;
invokes the overloaded operator function with a reference to cout as the first parameter, and the value
of the variable num as the second. For further overloading, i.e., for this operator to work with user-
defined classes, another overloaded function is necessary, similar to the above function declaration. A
new operator function accepts a reference to the instance of user-defined class instead of an integer.

Extraction Operator >> Overloading

The >> operator (used with istream) can also be overloaded to take care of user-defined types.
Inclusion of a function to overload the >> operator helps in writing more compact and readable code in
the main (). The program point . cpp illustrates the overloading of stream operators to operate on
user defined data items.

// point.cpp: use of both << and >> with a user-defined class.
t#include <iostream.h>

// user defined class

class POINT

{

Chapter 17: Steams Computation with Console 661

private:
int x, y;
public:
POINT ()
{
x =y = 0;

friend ostream & operator << (ostream &os, POINT &p)
friend istream & operator >> (istream & is, POINT &p)
}: ‘
// friend function to POINT
ostream & operator << (ostream& os, POINT &p)

{
0s << '(' << p.x << ', << p.y << ') ';
return os;
}
istream & operator >> (istream &is, POINT &p)
{

is >> p.x >> p.y;
return is;

)

void main()

{
POINT pl, p2:
cout << "Enter two coordinate points (pl, p2): ";

cin >> pl >> p2; // invokes overloaded operator >> ()

cout << *Coordinate points you entered are: " << endl;

cout << pl << endl << p2 << endl; // calls overloaded operator << ()
}
Run

Enter two coordinate points (pl, p2): 2.3 3 6
Coordinate points you entered are:

(2,3)

(5,6)

In main (), the statement
cin >> pl >> p2; // invokes overloaded operator >> ()
illustrates cascading of stream operators to read data; the leftmost >> is executed first, and invokes the
overloaded operator function with the first parameter as a reference to cin, and the second parameter
as a reference to the instance of POINT pl. The return value of this function (which is cin itself) is
used as the left hand side of the second >> operator and so on.

The friend function of the class POINT,
istream & operator >> (istream &is, POINT &p)

overloads the >> operator. It is similar to overloading the output operator. Again, note that the return
value enables cascading of the >> operator.

662 Mastering C++

Necessity of Friend Functions

The function overloading the operators >> and << need not always be declared as friend. If the data
members x and y were public members of the class POINT, or, if a public member function existed in
POINT which output the values of x and vy, the friend function declarations would be unnecessary
inside the class.

How do the manipulators work with the << operator?
Consider the usage of the manipulator endl:
cout << endl;
in the previous examples, to insert a'newline. The manipulator endl is the function that is declared as,
ostream far & endl (ostream far &);
in the header file, iostream.h. Thus, endl, is a function that accepts a reference to an ostream
(such as cout) and returns the same (a reference to an os tream). Recall that invocation of a function
with its name without any parentheses is considered as a pointer to a function. Now it is simple to
understand the appearance of the end1 on the right side of the << operator; the operator is overloaded
to have pointers to functions of this type (that accept a reference to an ostream and returns the
same).

Review Questions

17.1 What are streams ? Explain the features of C++ stream /O with C's /O system.
17.2 List C++ predefined streams and explain them with suitable example programs.
17.3 Draw console stream class hierarchy and explain its members.
17.4 What is the difference between the statements ?
cin >> ch;
ch = cin.get () ;
17.5 Write a program to illustrate the difference between cin and get1ine while reading strings.

17.6 What is the output of the following statements:
(a) cout << 65;
(b) cout.put(65);
©) cout.put('A');
17.7 Write a program to print the ASCII table using streams.

17.8 Write an interactive program to print a string entered in a pyramid form. For instance, the string

"object" has to be displayed as follows:

o
ob
obj
obje
objec
object

17.9 Write an interactive program to print a rectangle with diamond shape gap exactly at the centre of

that rectangle. Accept string from standard input device and print output on standard output

device. Here is the sample output when the string "object-object" is entered by the user:

Chapter 17: Steams Computation with Console 663

object-object
object object
objec Dbject

obj ject
ob ct
o t
ob ct
obj ect
obje ject

objec Dbject
object object
object-object -

17.10 Write an interactive program to print the salary-slip in the following format:

Centre for Development of Advanced Computing
Bangalore, India - 560 025
Salary-Slip for the Month of XXXXXX 1996
Date: dd/mm/yy
Employee Name: XXXXXXXXXXX Employee No.: XXX
Grade: xxX Basic Salary: XXXXX.XX
No. of days present: xx

<----PAYMENTS------ > <----DEDUCTIONS----- > <---- RECOVERIES---->
BASIC XXXXX . XX PF xxx.xx LIC XXX .X
DA KXXXX . XX FPF xx.xx CCUBE CONTR. XX .X
HRA XXXX . XX VPF xx.xx SOCIETY ADV X.X
CCA XXX . XX BEFUND x.xx RENT RECV XXX .X
DDA X . XX P.TAX xxx.xx PF LOAN XXX . X
ARREARS X .XX CANTEEN XXX.XX SALARY ADV XXXX.X
ADHOC .ALW XXX . XX WELFARE xx.x TOUR ADV XXX . X
TOTAL PAY XXXXX . XX TOTAL DED xxxx.Xx TOTAL RECV XXXX . X

NET PAY: XXXXX.XX

(SIGNATURE)
17.11 Explain the various methods of performing formated stream VO operations.
17.12 What are manipulators ? List the various predefined manipulators supported by C++ I/O streams.
17.13 How are the input and output streams tied using istream. tie () member function ?
17.14 Write a program to display numbers 0 to 10 in octal, decimal, and hexadecimal systems.
17.15 What are custom manipulators ? Write a custom manipulator for inserting 8 spaces in output.
17.16 Explain how standard manipulators are implemented.
17.17 Tlustrate parameterized custom manipulators using a suitable program.

17.18 Write a program to overload stream operators for reading and displaying the object of a class
Employee. The members of this class include name, emp_no, DateOfBirth, basic,
grade, qualification, etc.

18

Streams Computation with Files

18.1 Introduction

A computer system stores programs and data in secondary storage in the form of files. Storing pro-
grams and data permanently in main memory is not preferred due to the following reasons:

+ Main memory is usually too small to permanently store all the needed programs and data.

+ Main memory is a volatile storage device, which loses its contents when power is turned off.

The most visible entity in a computer system is a file. The operating system implements the abstract
concept of a file by providing file services and managing mass storage devices such as floppy disks,
tapes, and hard disks. The various components involved in file processing are shown in Figure 18.1.

write data
(to files)

cin >> var;
(get data
from key-
board)

Secondary storage

. Y
Data Files
R read data
(from files)
program-file
interaction
Primary storage
I A
Program + Data <« A
cout << var;
(put data
toscreen) program-console.

interaction

Hello ”
v
I= SR S
= ==\
Keyboard

Figure 18.1: Program-console and file interaction

Chapter 18: Streams Computation with Files 665

What is a File ?

A file is a collection of related information defined by its creator. Commonly, files represent programs
(both source and object forms) and data. Data may be numeric, alphabetic, or alphanumeric. Files may
be free-form, such as text files, or may be rigidly formatted. In general, a file is a sequence of bits, bytes,
lines, or records whose meaning is defined by its creator and user. A file is named and is referred to by
its name. To define a file properly, it is necessary to consider the operations which can be performed on
files. The operating system provides most of the essential file manipulation services such as create.
open, write, read, rewind, close, and delete.

A program typically involves data communication between the console and the program or between
the files and program, or even both. The program must atleast perform data exchange between proces-
sor and main memory. Note that a program without the capability to communicate with the external world
will serve no useful purpose (irrespective of the objective with which it is designed).

The streams computation model for manipulating files resemble the console streams model. It uses
file streams as a means of communication between the programs and the data files. The input stream
supplies data to the program and the output stream receives data from the program. Thus, the input
stream extracts the data from the file and supplies it to the program, whereas output stream stores the
data into the file supplied by the program. The movement of data between the disk files and input/
output stream ina program is depicted in Figure 18.2.

Input stream

read data

data
input

Disk AAAMAAAA
Program
files % AAAMAAAA &

data

Output stream
output

write data

Figure 18.2: File input and output streams

18.2 Hierarchy of File Stream Classes

The file handling techniques of C++ support file manipulation in the form of stream objects. The stream
objects cin and cout are used extensively to deal with the standard input and output devices. These
objects are predefined in the header file, iostream.h as a part of the C++ language. There are no
such predefined objects for disk files. All class declarations have to be done explicitly in the program.

666 Mastering C++

There are three classes for handling files:

¢ ifstream - for handling input files.

¢ ofstream - for handling output files.

¢ fstream - for handling files on which both input and output can be performed.
These classes are derived from £streambase and from those declared in the header file iostream.h
(istream, iostream, ostream). The hierarchy of C++ file stream classes is shown in Figure'18.3.

X pointer
> ios »| streambuf
iostream.h istream ostream
file T
streambuf
fstream.h . .
file ifstream fstream ofstream filebuf
v v v
fstream base

Figure 18.3: Hierarchy of file stream classes

The classes ifstream, of stream, and fstream are designed exclusively to manage the disk
files and their declaration exists in the header file fstream.h. To use these classes, include the
following statement in the program

#include <fstream.h>

The actions performed by classes related to file management are described below:

filebuf: The class filebuf sets ihe file buffer to read and write. It contains constant openprot
used in open () of file stream class. It also contains close () as a member.

fstreambuf: The class £streambuf supports operations common to the file streams. It serves as a
base class for the derived classes ifstream, ofstream, and fstream and contains open () and
close () as member functions.

ifstream: The class ifstream supports input operations. It contains open () with default input
mode and inherits get (), getline(), read(), seekg (), and tellg () functions from istream.

Chapter 18: Streams Computation with Files 667

ofstream: The class of stream supports output operations. It contains open () with default output
mode and inherits put (), seekp (), tellp(), and write () functions from ostream.

fstream: The class £ st ream supports simultaneous input and output operations. It contains open ()
with default input mode and inherits all the functions from istream and ostream classes through
iostream.

18.3 Opening and Closing of Files

In order to process a file, first, it must be opened to get a handle. The file handle serves as a pointer to
the file. Typically, manipulation of a file involves the following steps:

« Name the file on the disk

« Open the file to get the file pointer

+ Process the file (read/write)

+ Check for errors while processing

« Close the file after its complete usage

The filename is a string of characters, with which a file is logically identified by the user. It provides
ameans to communicate with the user transparently. The number and type of characters used in naming
a file depends on the operating system. Normally, a file has two parts: a primary name and an optional
extension. If the file name has an extension, it is separated by a period from the primary name. Some of
the valid file names in the MS-DOS based machines are the following:

student.cpp
data.txt
copy . exe
student .obj
student .exe
TEMP

datal
tax.in

In MS-DOS systems, the maximum size of a primary name is eight characters and that of an extension
is three characters. However, in UNIX based machines, the file name can be upto 31 characters and any
number of extensions separated by dots. Some valid file names in the UNIX system include all those
valid in the MS-DOS and in addition, it includes the following:

.login (no primary name, acts as hidden file)
xyz.txt.mine

text_data_file

student .8sem.raj

In order to get a file pointer, first the file must be created (if it does not exist) and linked to the file
name. A file stream can be defined using stream classes, ifstream, ofstream, or f£stream de-
pending on the purpose (read or write). In C++, a file can be opened using the following:

+ The constructor function of the class.

+ The member function open () of the class.

After processing an opened file, it must be closed. It can be closed either by explicitly using the
~lose () member function of the class or it s automatically closed by the destructor of the class, when
the file stream object goes out of scope (expires).

668 Mastering C++

Opening Files Using Constructors

In order to access a file, it has to be opened either in read, write, or append mode. In all the three file
stieam classes, a file can be opened by passing a filename as the first parameter in the constructor itself.
For example, the statement

ifstream infile ("test.txt");
opens thefile test. txt for input. It is known that, a constructor is used to initialize an object during
its creation. Hence, the constructor can be utilized to initialize the filename 1o be used with the file stream
object. The creation and assignment of file name to the file stream object involves the following steps:

+ Create a file stream object using the appropriate class depending on the type of file stream required.
For example, ifstream can be used to create the input stream, ofstream can be used to create
the output stream, and fstream can be used to create the input and output stream.

«+ Bind the file stream to the disk. In disk, file stream is identified by a file name.

For instance, the following statement opens a file named dat abase for input:

ifstream infile ("database");

It creates infile as the object of the class i £stream that manages the input stream, and opens the

file database and binds it to the output stream disk file. Similarly, the statement

ofstream outfile("data.out");

defines outfile as the object of the class ostream, and binds it to the file data. out for writing.

The program statements can refer to the file objects similar to the stream objects. The syntax for
performing I/O operations with standard input-output devices also holds good for files. For instance, to
orint the message Hello World on the console and into the file, the following commands can be
issued:

cout << "Hello World";

prints the message Hello World on the standard output device. Whereas, the statement
myfile << "Hello World";

prints the message Hello World into the file pointed to by the file pointer myfile (Figure 18.4).

Disk

Output stream

— o

0

outfile << "Hello World";

g result file
N @
S P, &
80 | anasvrmn &0
e AAAAASA ’g
Input stream £
P © (—
.- O
0
infile >> name; data file

Figure 18.4: File /0O with stream operators

Chapter 18: Streams Computation with Files 669

The following statements:

outfile << *Hello World"; // write string constant
outfile << salary; // write variable content
outfile << 750; // write 750 to file

prints the string "Hello World" and the contents of the variable salary to the output file.
Similarly, the following statements:

infile >> name; // read string
infile >> age; // read integer
infile >> number; // read float

read the variables name, age, and number from the input file stream infile.

The constructors of all these classes are declared in the header file fstream. h. The prototypes of
file stream constructors are shown in Figure 18.5.

filename with its path open mode access permission

— X e

ifstream(const char *path, int mode=ios::in, int prot=filebuf::openprot);

(a) constructor of class ifstream
ofstream(const char *path, int mode=ios::out, int prot=filebuf::openprot);

(b) constructor of class ofstream

fstream(const char *path,int mode=ios::in|ios::out,int prot=filebuf: :openprot});
(c) constructor of class fstream

Figure 18.5: Prototype of file stream class constructors

The stream class arguments have the following meaning:

path: It specifies the pathname of the file to be opened. If the file is in the current directory, only the
filename needs to be specified. Otherwise, separate the directory names by a backslash (\) in the MS-
DOS or a slash (/) in the Unix operating systems.

mode: It specifies the mode in which the file is to be opened. The argument may be specified by using
enumerated constants declared in the ios class.

prot: It specifies the access permission. It is not used if ios: :nocreate is used in mode. The
default permissions are set in the static variable filebuf: : openprot for both read and write (The
file can be read from and written to) permissions. The access permissions can be read only (S_IREAD)
or write only (S_IWRITE). Under UNIX, prot parameter can be used to specify read, write, and
execute permissions to specific owner categories (viz., user, group and others).

The file must be closed to release all the resources allocated to it. It is known that, the destructor
normally does the cleanup operation. Whenever file stream object goes out of scope or the program

" 670 Mastering C++

terminates its execution, the file is automatically closed by destructor. The program stdfile.cpp
creates a file student . out using constructors and writes student details into it.

// stdfile.cpp: student file, creating file with constructor function
#include <fstream.h>
void main()
{
char name([30];
int marks;
ofstream fout ("student.out"); // connect student.out to fout
// read first student details
‘cout << “Enter Name: ";
cin >> name;
cout << "Enter Marks Secured: *;
cin >> marks;
// write to a file
fout << name << endl;
fout << marks << endl;
// read second student details
cout << "Enter Name: *;
cin >> name;
cout << "Enter Marks Secured: *;
cin >> marks;
// write to a file
fout << name << endl;
fout << marks << endl;

}
R

Enter Name: Rajkumar
Enter Marks Secured: 95

Enter Name: Tejaswi
Enter Marks Secured: 90

Note: On execution the file student ..out contains the following.

Rajkumar
95
Tejaswi
90

In main (), the statement
ofstream fout ("student.out"); // connect student.out to fout

creates the object fout and binds it to the file student . out by opening it in the write mode. The
statement

fout << name << endl;
writes the string name to the file, and the statement
fout << marks << endl;

writes the integer variable marks to the file. The file student . out is closed automatically when the
program terminates.

Chapter 18: Streams Computation with Files 671

Note that, when a file is opened in write-only mode, a new file is created if a file with the same name
does not exists. Otherwise, the current contents of the file is truncated and opened in write mode. The
program stdread.cpp opens file student .out using a constructor and prints its contents on the
console.

// stdread.cpp: student file, read the file student.out
#include <fstream.h>
void main()

{
char name[30];
int marks;
ifstream fin ("student.out"); // connect student.out to fout
// read first student details
fin >> name;
fin >> marks;
cout << "Name: * << name << endl;
cout << "Marks Secured: " << marks << endl;
// read second student details
fin >> name;
fin >> marks;
cout << "Name: " << name << endl;
cout << "Marks Secured: " << marks << endl;
}
Run

Name: Rajkumar
Marks Secured: 95
Name: Tejaswi
Marks Secured: 90

The above program must be executed only when a file with the name student . out already exists and
has data as expected by the program.

Opening and Closing of Files Explicitly
The file can also be opened explicitly using the function open () instead of a constructor. This mecha-
nism is generally used when different files are to be associated with the same object at different times.
The syntax for opening a file is shown in Figure 18.6. The file can be closed explicitly using the
close () function as follows:

stream_object.close();
The following examples illustrates file open and close operations.

1. Opening file in write mode:
ofstream fout; // create stream for output
fout.open({ "student.out" }; // bind stream to file

fout.close(); // disconnect stream from student.out

672 Mastering C++

fout.open("person.out"); // bind stream to another file

2. Opening file in read mode:

ofstream fin; // create stream for input
éir‘l‘.open("*student.in"); // bind stream to file

éiﬁ:close(); // disconnect stream from student.in
éil:x.open("student.out"); // bind stream to another file

There is a limit on the maximum number of files which can be opened. This constraint is imposed by
the underlying operating system on which a program executes. For instance, in MS-DOS, the entry
FILES=N in the CONFIG. SYS file; the entry FILES = 20 indicates there can be a maximum of 20
files opened at a time. If any attempt is made to open a file above this limit, it fails and returns the NULL
handle. Therefore, it is advisable to close a file when it is no longer needed.

ifstream, ofstream, fstream user defined object disk filename

N e

file-stream-class stream-object ("filename");

(a) file stream object and attaching file name

file-stream-class stream-object; . Stream object creation

stream-object.open("filename"); -—e-e—m—.. attaching the file name
(b) file stream object and attaching file name explicitly

Figure 18.6: Syntax of opening the file

18.4 Testing for Errors

The assumption of a file operation (opening, processing, or closing) is always successful in an ideal
situation. There are situations, when the user tries to open a non-existent file in read-mode or tries to
open a file in write mode which has been marked as read-only. File operations fail under such circum-
stances. Such errors must be trapped and appropriate actions must be taken before further processing.

This can be done using the operator ! with an instance of the i fstream, of stream or fstream.
The operator ! is overloaded to return nonzero in case any stream errors have occurred. For example, to
open a file for input and test whether it has successfully opened (it will not be opened if the file does not
exist), the following code may be used: :

Chapter 18: Streams Computation with Files 673

ifstream in_file("test.txt" });
//test for error
if('in_file)
{ //File wasn't opened
cerr << "Cannot open test.txt\n";
exit(1);
}

Once the file has been opened successfully, acommon activity is to read from the file while the end-
of-file has not yet been reached. Using the name of a file stream instance in place of a condition
expression (such as inside an 1 f orwhile statement) evaluates to nonzero only when no errors have
occurred in the file. Hence, errors such as end-of-file can be tested as follows:

while(in_file) // while EOF has not been reached
{

//Read from the file.
}

where in_file is an instance of ifstream, but an instance of ofstream or f£stream can
equally be used in such situations.

An example using i fstream to output the contents of a file is given below. Note that, the use of
the manipulator resetiosflagsto prevent skipping white-space characters in the input. A program
to display the contents of a file (filename is entered interactively) on the console is listed in £disp . cpp-

// fdisp.cpp: display file contents using ifstream to input from a file
#include <fstream.h>
#include <iomanip.h>
int main()
(
char ch;
char filename([25];
cout << "Enter Name of the File: ";
cin >> filename;
/) create a file object in read mode
ifstream ifile(filename);
if(tifile) // file open status
{

cerr << "Error opening " << filename << endl;

return 1;
}
ifile >> resetiosflags(jos::skipws); // do not skip space or new line
/ /Comment above line; then execute the program, you will see funny result
while(ifile) // while EOF not reached.
{
ifile >> ch; // read a character from file
cout << ch; // display character on console
}
return 0;

674 Mastering C++

Run

Enter Name of the File: mytype.cpp
[The contents of the input file, mytype.cpp is displayed on console]

In main (), the statement
ifstream ifile(filename):

creates the disk file object, 1 £11e for a file name entered interactively in the read mode. In the absence
of the statement,

ifile >> resetiosflags(ios::skipws);
the file will be displayed without any spaces or newlines, since the >> operator, neglects any white-
space characters by default. The statement

ifile >> ch;
reads a character from the file in a manner similar to cin. It does not skip white-space characters since
ios::skipws flagisreset. The object ifile becomes 0 as soon as it reaches the end of the file and
hence, the statement

while(ifile)

loops until end of file is reached. All those files that are opened by a program must be closed by it.
Otherwise, the system closes all those files which are in open state during the termination of a program.

The program keyin.cpp waits for keyboard input and dumps all input characters into the file
key . txt until the end-of-file (Ctrl-Z) character is pressed followed by the carriage-return key.

// keyin.cpp: Reads all the characters entered and stores the same in the file
#include <fstream.h>
void main()

{

char ch;
cout<<"Enter characters..<Ctrl-Z followed by carriage-return to stop>\n";
ofstream ofile("key.txt"); // opens file in output ASCII mode

while(cin) // not end of file

{
cin.get(ch); // read character from console
ofile << ch; // write to file

}

ofile.close(); // close file

}

Run

Enter characters..<Ctrl-Z followed by carriage-return to stop>
1

ABC .. XYZ
~Z

Note: The file key . txt has all the above characters except 2

In main, the statement
ofstream ofile("key.txt");

opens the file key . txt in output mode. The statement

‘Chapter 18: Streams Computation with Files 675

cin.get(ch);

reads a character from the input device without skipping white-space characters. Hence, the
resetiosflags(ios: :skipws) manipulator need not be used to prevent skipping of white-
space characters, The statement

ofile << ch;
writes character to the output file. The statement

ofile.close();
closes the file.

Another approach for detecting the end-of-file condition is using the member functioneof (). This
operates as follows:

stream-object.eof () = 0 if end-of-file is not detected
= non-zero if end-of-file is detected
The function eof () is a member function of the class ios. For example

if(fin.eof ())

// end-of-file
else

// not end-of-file

The program stdwr . cpp illustrates the processing of errors that occur while manipulating files.

// stdwr.cpp: student file, creating, writing, and reading the same
#include <fstream.h>
void student_write(int count)
{
char name([30];
int i, marks;
// create a file, open it in write mode and save data
ofstream fout; // create a file object
fout.open("student.out"); // connect file object to file
if(!fout)

{
cout << "Error: " << "student.out cannot be opened in write mode";
return;
}
for(i = 0; i < count; i++)
{
cout << "Enter Name: ";
cin >> name;
cout << "Enter Marks Secured: ";
cin >> marks;
// write to a file
fout << name << endl;
fout << marks << endl;
}

fout.close(); // disconnect a file

676 Mastering C++

void student_read()
{
char name({30};
int i, marks;
// create a file, open it in write mode and save data

ifstream fin; // create a file object
fin.open("student.out"); // connect file object to file
if(!fin)

{

cout << "Error: " << "student.out cannot be opened in read mode";

return;
}
while (1)
{
fin >> name;
fin >> marks;
if(fin.eof ())
break;
cout << "Name: " << name << endl;
cout << "Marks Secured: * << marks << endl;
}
fin.close(); // disconnect a file

}
void main()
{
int count;
cout << "How many students ? *;
cin >> count;
cout << "Enter student details to be stored..." << endl;
student_write(count);
cout << "Student details processed from the file..." << endl;
student_read() ;
}

Run

How many students ? 3

Enter student details to be stored...
Enter Name: Mandgala

Enter Marks Secured: 75

Enter Name: Chatterjee

Enter Marks Secured: 99

Enter Name: Rao-M-G

Enter Marks Secured: 50

Student details processed from the file...
Name: Mangala

Marks Secured: 75

Name: Chatterjee

Marks Secured: 99

Name: Rao-M-G

Marks Secured: 50

Chapter 18: Streams Computation with Files 677

In student_write (), the statement
fout.open("student.out"); // connect file object to file
opens the file student.out and connects the same to the stream object fout. The statement
if(!fout)
verifies whether the file is opened successfully or not. If condition is true, when ! fout is nonzero.
The statement in student_read()

if(fin.eof ())
break;

checks for the end-of-file and terminates file processing if the end-of-file is reached.

18.5 File Modes

The constructors of ifstream and key.txt and the function open () are used to create files as
well as open the existing files in the default mode (text mode). In both methods, the only argument used
is the filename. C++ provides a mechanism of opening a file in different modes in which case the second
parameter must be explicitly passed. The syntax is as follows:

stream-object.open{ "filename", mode);
It opens the file in the specified mode. The list of file modes are shown in Table 18.1 with mode value and
their meaning.

mode value Effect on the mode
ios::in open for reading.
ios::out open for writing.
ios::ate seek (go) to the end of file at opening time.
ios::app append mode: all writes occur at end of file.
ios::trunc truncate the file if it already exists.
ios: :nocreate open fails if file does not exist.
ios: :noreplace open fails if file already exists.
ios::binary open as a binary file.

Table 18.1: File open modes
The following points can be noted regarding file modes:

« Opening a file inios: : out mode also opens itinthe ios : : trunc mode by default. That is, if the
file already exists, it is truncated.

+ Bothios: :app and ios : : ate sets poiriters to the end-of-file, but they differ in terms of the types
of operations permitted on a file. The ios: : app allows to add data from the end-of-file, whereas
ios: : ate mode allows to add or modify the existing data anywhere in the file. In both the cases, a
file is created if it is non-existent.

+ The mode ios: :app can be used only with output files.

+ The stream classes i fstreamand ofstream open files in read and write modes respectively by
default.

678 Mastering C++

¢ For fstreamclass. the mode parameter must be explicitly passed.
+ More than one value may be ORed to have a combined effect. For instance, the following statement
opens a file for reading in binary mode:
istream in_file("myfile", ios::in | ios::binary };
The program payfile.cpp generates a payroll-like output and directs the output to the file
pay . txt instead of cout. It stores floating point data in the form of ASCII characters instead of
machine representation (binary form).

// payfile: payroll like output example printing results to file
#include <fstream.h>
#include <iomanip.h>
void main ()
{
float £1=123.45, f2=34.65, £3=56;
// open file "pay.txt" in output mode and truncate its contents if exists
ofstream out_file("pay.txt", ios::trunc);
out_file << setiosflags(ios::showpoint|ios::fixed)
<< setiosflags(ios::right);
out_file << setw(6) << fl << endl;
out_file << setw(6) << f2 << endl;
out_file << setw(6) << f3 << endl;

}
Run

After execution of the program, the file pay . txt contains the following:

123.45
34.65
56.00

In main (), the statement
ofstream out_file(“pay.txt”, ios::trunc);

creates the file pay.txt and truncates its contents if the file already exists. As with the console
streams, manipulators can be used with any of the file stream instances.

18.6 File Pointers and their Manipulations

The knowledge of the logical location at which the current read or write operations occur is of great
importance in achieving faster access to information stored in a file. The file management system
associates two pointers with each file, called file pointers. In C++, they are called get pointer (input
pointer) and put pointer (output pointer). These pointers facilitate the msvement across the file while
reading or writing. The get pointer specifies a location from where the current reading operation is
initiated. The put pointer specifies a location from where the current writing operation is initiated. On
completion of a read or write operation, the appropriate pointer will be advanced automatically.

Default Actions

The file pointers are set to a suitable location initially based on the mode in which the file is opcned...
Fundamentally, a file can be opened in the read mode, write mode. nr append mode. The logical location
of file pointers when a file is opened is discussed below (see Figure 18.7.):

Chapter 18: Streams Computation with Files 679

« Read-only Mode: when a file is opened in read-only mode. the input (get) pointer is initialized to point
to the beginning of the file. so that the file can be read from the start.

+ Write-only Mode: when a file is opened in write-only mode, the existing contents of the file are
deleted (if a given file already exists) and the output pointer is set to point to the beginning of the file,
so that data can be written from the start.

« Append Mode: when a file is opened in append mode, the existing contents of the file remain unat-

fected (if a given file already exists) and the output pointer is set to point to the end of the file so that
data can be written (appended) at the end of the existing contents.

Co) “hello" file

Read mode H]le |1l

o
o}

Wlojr |1l]4d

A

input pointer

"hello" file

Write mode
A
output pointer
"hello" file
Appendmode | H| e |1 |1 }o Wlo|xr |1l}d

A

output pointer
Figure 18.7: File pointer position on opening a file

Functions for Manipulation of File Pointers

The C++ I/O system supports four functions for setting a file pointer to any desired position inside the
file or to get the current file pointer. These allow the programmer to have control over a position in the
file where the read or write operation takes place. The functions are listed in the Table 18.2.

Function | Member of the class Action Performed

seekg () ifstream Moves get file pointer to a specific location
seekp () ofstream Moves put file pointer to a specific location
tellg() ifstream Returns the current position of the get pointer
tellp() ofstream Returns the current position of the put pointer

Table 18.2: File pointer control functions

680 Mastering C++

The seekp () and tellp() are membér functions of ofstream. The seekg and tellg are
member functions of i fstream. The class £st ream deals with files in both input and output modes.
Hence, there are two file pointers in class fstream - the put pointer used for writing and the get
pointer used for reading. All four functions mentioned above are available in the class £st ream. The

seekp () and tellp() deal with the put pointer, while seekg () and tellg () deal with the get
pointer.

The two seek functions have the following prototypes:
istream & seekg(long offset, seek_dir origin = ios::beg);
ostream & seekp(long offset, seek_dir origin = ios: :beg);
Both functions set a file pointer to a certain offset relative to the specified origin. The second parameter
origin, represents the reference point from where the offset is measured. It can be specified by using
an enumeration declaration (seek_dir) given in the ios class. (See Table 18.3.)

origin value Seeks from...

ios::beg seek from beginning of file
ios::cur seek from current location
ios::end seek from end of file

Table 18.3: File seek origins

For example, the statement
infile.seekg(20, ios::beg);
or
infile.seekg(20);
moves the file pointer to the 20th byte in the file, infile. After this, if a read operation is initiated, the
reading starts from the 21st itsm (bytes in file are numbered from zero) within the file. The statement
outfile.seekp(20, ios::beg);
or
outfile.seekp(20);
moves the file pointer to the 20" byte in the file out £i1e. After this, if write operation is initiated, the
writing starts from the 21 item (bytes in file are numbered from zero) within. the file. Consider the
following statements: ,
ofstream outfile("student.out”, ios::app);
int size = outfile.tellp();

The first statement creates the file stream object outfile, and connects it to the disk file.
student.out. It moves the output pointer to the end of the file. The second statement assigns the
value of the put pointer to the integer variable size, which in this case represents the number of bytes
in the file. The program fsize. cpp prints the size of a file, whose name is given as a command line
parameter.)

// fsize.cpp: file size finding using seekg and tellg
#include <fstream.h>

int main(int argc, char *argv(])

{

if(argc < 2) // no filename is passed

Chapter 18: Streams Computation with Files 681

cout << "Usage: fsize <filename>";
return 1;
}
ifstream infile(argv{ 1]); // file open in read and write mode
if(tinfile) // open success
{
cerr << “Error opening “ << argv[1] << endl;
return 1;

}

infile.seekg(0, ios::end); // set read pointer to end of file
cout << "File Size=" << infile.tellg(); // read current position
return 0;

}

Runt

Usage: fsize <filename>

Run2
File Size=437

In main (), the statement
infile.seekg(0, ios::end);
moves the read pointer to the end of the file, and the statement
infile.tellg{);
reads the get pointer value. In this situation, it represents the size of the file.

The.seekg () sets the get pointer while seekp () sets the put pointer to the specified location.
Some of the pointer offset calls and their actions are shown in Table 18.4 and Figure 18.8. It is assumed
that the variable fout is the object of the stream class of stream and f in is the object of the stream
class ifstream.

Seek call Action performed
fout.seekg(0, ios::beg) Go to the beginning of the file
fout.seekg (0, ios::cur) Stay at the current file
fout.seekg(0, ios::end) Go to the end of the file
fout.seekg(n, ios::beg) Move to (n+1) byte location in the file
fout.seekg(n, ios::cur) Move forward by n bytes from current position
fout.seekg(-n, ios::cur) Move backward by n bytes from current position
fout.seekg(-n, ios::end) Move backward by n bytes from the end
fin.seekp(n, ios::beg) Move write pointer to (n+1) byte location
fin.seekp(-n, ios::cur) Move write pointer backward by n bytes

Table 18.4: Seek calls and their actions

682 Mastering C++

ios: :beg ios: :cur ios::end
seek-origin
v 4?
------------------ file il
(1 .
(ios:beg, offset)
I (2
I (ios:cur, offset) e
(1) seekp/g(offset,ios:;beg); (3
(2) seekp/g(offset,ios::cur); -
(ios::end, offset)

(3) seekp/g(offset,ios:;end);

Figure 18.8: Seek positions and their origin

18.7 Sequential Access to a File

Unlike other programming languages (such as COBOL), C++ does not provide commands organizing
and processing files as sequential or direct (random) files. However, it provides file manipulation com-
mands which can be used by the programmer to device access to files sequentially or randomly. A
sequential file has to be accessed sequentially; to access the particular data in the file all the preceding
data items have to be read and discarded. A random file allows access to the specific data without the
need for accessing its preceding data items. However, it can also be accessed sequentially. Organizing
a file either as sequential or random depends on the type of media on which the file is organized and
stored. For instance, a file on a tape must be accessed sequentially, whereas, a file on a hard disk or
floppy disk can be accessed either sequentially, or randomly. In C++, it is the responsibility of the
programmer to devise a mechanism for accessing a file.

The C++ file stream system supports a wide variety of functions to perform the input-output opera-
tion on files. The functions, put () and get (), are designed to manage a single character at a time.
The other functions, write () and read(), are designed to manipulate blocks of character data.

The put() and get() Functions

The functionget {) is amember function of the file stream class £ st ream, and is used to read a single
character from the file. The functionput () is a member function of the output stream class f st ream,
and is used to write a single character to the output file. The program putget . cpp reads a string from
the standard input device, and writes the same to a file character by character. A sequential file is
created and its pointer is positioned at the beginning of the file. It is processed sequentially until the
end-of-file is encountered.

Chapter 18: Streams Computation with Files 683

// putget.cpp: writes and reads characters from the file
#include <fstream.h>
void main()
{
char ¢, string{ 75 17
fstream file("student.txt", ilos::1in | 1os::out j;
cout << "Enter String: ";
cin.getline(string, 74 };
for(int i = 0; stringf{i]; i++)
file.put(stringl[i]});
file.seekg(0); // seek to the beginning
cout << "Output String: "4
while(file)
{
file.get(¢); // reads a character
cout << ¢;

}

Run

Enter String: Object-Computing with C++
Output String: Object-Computing with C++

Note: The file student . txt contains the entered string.

The stream fstream provides the facility to open a file in both read and write modes: so that the
file can be processed randomly by positioning the file pointers.

18.8 ASCIlI and Binary Files

The stream operators insertion and extraction always manipulate and deal with formatted data. Data has
to be formatted to produce logical information. This is because, most of the 1/0 devices communicate
to the computer system using ASCII code, but CPU processes these data using the binary system.
Hence, it is necessary to convert data while reading from the input device or displaying data on output
device. Most visible data formatting operation is alignment of display fields. In addition to this. data
formatting operation also occur transparently while transferring data between the program and console
or a file. For example, in order to display an integer value, the << operator converts the number into a
stream of ASCII characters. Similarly, the >> operator converts the input ASCII characters to binary
while reading data from the input device. For instance, when a number, say, 120 is typed in response to
an input statement such as:
cin >> 1i;

“The user enters data by typing on the keyboard. In this case, stream operator receives ASCII codes of
the numeric characters 1, 2, and O (which are 49, 50, and 48). The >> operator function converts the input
ASCII data to binary and assigns to the variable i. Similarly, the << operator in a statement such as:

cout << i;
converts the content of the variable i (say 120) into three ASCII characters, 49, 50, and 48 and then
sends the same to the standard output device. The representation of an integer in the character form
and binary form is shown in Figure 18.9.

686 Mastering C++

The program objsave.cpp illustrates the flexibility gained by overloading the insertion and
extraction operators while saving objects into a file or retrieving objects from a file.
// objsave.cpp: saving a object to a file with stream operator overloaded
#include <fstream.h>
#include <ctype.h> // for toupper
#include <string.h> // for strlen
#define MAXNAME 40
class Person
{
private:
char name[MAXNAME] ;
int age;
public:
// this function writes the class's data members to the file
void write(ofstream &os)

{

os.write(name, strlen(name));

0s << ends;

os.write((char*)&age, sizeof(age));
}

// this function reads the class's date member from the file.
// It returns nonzero if no errors were encountered while reading
int read(ifstream &is)

{
is.get(name, MAXNAME, 0);
name|[is.gcount()] = 0;
is.ignore(1 }; // ignore the NULL terminator in the file.

is.read((char*)&age, sizeof(age));

return is.good();
}
// stream operator, << overloading
friend ostream & operator << (ostream &os, Person &b);
// stream operator >> cperator overloading
friend istream &operator >> (istream &is, Person &b);
/7 output file stream operator overloading
friend ofstream &operator << (ofstream &fos, Person &b)
{

b.write(fos);

return fos;
}
// output file stream operator overloading
friend ifstream &operator >> (ifstream &fos, Person &b)
{

b.read(fos);

return fos;

}:
istream &operator >> (istream &is, Person &b)

{

cout << "Name: ";

}

Chapter 18: Streams Computation with Files 687

is >> ws; // flush input buffer
is.get(b.name, MAXNAME) ;

cout << “"Age : ";

is >> ws >> b.age;

return is;

ostream &operator << (ostream &os, Person &b)

{

}

0os << b.name << endl;
os << b.age << endl;
return os;

void main ()

{

Person p_obj;
// open a file in binary mode and write objects to it
ofstream ofile("person.txt", ios::trunc|ios::binary);

char ch;
do
{
~cin >> p_obj; // read object
ofile << p_obj; // write object to the output file

cout << "Anothexr ? ";
cin >> ch;
} while(toupper(ch) == ‘'Y' };
ofile.close();
// Output loop, display file content
ifstream ifile(“person.txt", ios::binary);
cout << "The objects written to the file were:..! << endl;
while(1)

{
ifile >> p_obj; // extract person object from file
if(ifile.fail(}) // file read fail, end-of-file
break;
cout << p_obj; // display person object on console
}
}
Run

Name: Tejaswi

Age : 5

Another ? ¥

Name: Savithri

Age : 23

Another ?

The objects written to the file were:..
Tejaswi

5

Savithri

23

688 Mastering C++

In the above program, the object p_ob3 of the class Person is retrieved from or saved to a file just
like a variable of a built-in data type. The statement

cin >> p_obj;

reads the object, p_ob3j from the standard input device, whereas, the statement
ifile >> p obj;

retrieves the object, p_obj from the input file i f11e. The statement
cout << p_obj;

displays the object, p_obJ on the standard output device and the statement
ofile << p_obj;

stores the object p_ob7j in the file. The mechanism of manipulating user defined objects with stream
operators is depicted in Figure 18.10.

Client program

T~

person per obj;
ofstream ofile
("person.txt",..);
cin >> per obj;
—ofile << per obj;
ifstream ifile
("person.txt",..);
| -ifile >> per obj;
cout << per obj;

///’——‘\\\\\\\\\\~‘_J

sae1ado

S Ies13530)
B

>>

Figure 18.10: Files and objects interaction

The classes ifstreamand ofstream are declared in the fstream. h header file. The member
functions of the stream classes ifstream and ofstrean, get () and write{) can be used to
manipulate user defined objects in disk files. These functions handle the entire structure of an object as
a single unit, and store or retrieve in binary format. For instance, the member functionwrite () of the
class ofstream, writes a class's object from memory byte-by-byte without conversion to the target
disk file opened in binary mode. It is important to note that, only data members of a class are copied to
the disk file. For instance, the statement in the above program,

ofile << p_obj;
can be replaced by the statement,
ofile.write((char *) &p obj, sizeof(p obj));
to store the object p_obj to the disk file. Likewise, the statement
ifile >> p obj;

Chapter 18: Streams Computation with Files 689

can be replaced by:

ifile.read((char *) &p_obj, sizeof (p_obj));
in order to retrieve the object from the disk file. The length of the object is computed using the sizeof
operator. It returns the number of bytes required to hold all the data members of the p_ob3j object.

18.10 File Input/Output with fstream Class

The class fstream supports simultaneous input and output operations. It contains open ()} with
input mode as default. It inherits all the functions from istream and ostream classes through
jostream. The program student . cpp illustrates the role of £stream class in the manipulation of
files. It reads the data from the input file student.in and writes the processed information into
another disk file student.out.

// student.cpp: reads students from files and writes result to another file
#include <iostream.h>
#include <fstream.h>
#include <conio.h>
#include <process.h>
void main()
{
fstream infile; // input file
fstream outfile; // output file
int i, count, percentage;
char name[30];
// Open source file for reading
infile.open("student.in", ios::in);
if(infile.fail{())
{
cout << "Error: student.in file non-existent";
exit(1)3
}
outfile.open(“student.out”, ios::out);
if(outfile.faill())
{
cout << "Error: unable to open student.out in write mode";
exit(1):
}
infile >> count; // how many students
// write header to output file
outfile << " students Information Processing” << endl << endl;
outfile << "-—-—m-m--—m=s——s-eo-——-ooooooosoTTooTTmEIEETETTT " << endl;
for(i = 0; i < count; i++)
{
// read data and percentage secured from the input file
infile >> name;
infile >> percentage;
// write name and class secured based on percentage to output file
outfile << "Name: " << name << endl;
outfile << "Percentage: " << percentage << endl;

690 Mastering C++

outfile << "Passed in: *;
if(percentage >= 70)
outfile << "First class with distinction*;
else
if(percentage >= 60)
outfile << "First class";
else
if(percentage >= 50)
outfile << "Second class";
else
if (percentage >= 35)
outfile << "Third class*;
else
outfile << “Sorry, Failed!*;
outfile << endl;
outfile << Mmoo~ " << endl
}
// close files
infile.close();
outfile.close();
}

Run

Note that before running the above program, create the input file student . in containing the data
according to the following format:

1. Number of students
2. First student name (without blanks)
3. First student percentage score

N. Last student name
Last student percentage score

It processes the input file and writes results to the output file; see the contents of the student . out.
The input file student . in contains the following information:

6
Rajkumar
84
Tejaswi
82
Smrithi
60

Anand

55
Rajshree
40
Ramesh
33

The above Run has created the output file student . out containing the following:

Chapter 18: Streams Computation with Files 691

students Information Processing

Name: Rajkumar
Percentage: 84
pPassed in: First class with distinction

Name: Tejaswi
Percentage: 82
passed in: First class with distinction

SRR ket

Name: Smrithi
Percentage: 60
Passed in: First class

@ e e — —— —m— —m— ST

Name: Anand
Percentage: 55
passed in: Second class

Name: Rajshree
Percentage: 40
passed in: Third class

Name: Ramesh
Percentage: 33
Passed in: Sorry, Failed!

In main (), the statements

fstream infile; // input file
fstream outfile; // output file

create objects of the stream class fstream, and the statements

infile.open("student.in", ios::in);

outfile.open("student.out", ios::out);
bind the stream objects infile andoutfileto disk files named student . inand student . out
respectively. Note that the stream objects infile and outfile are instances of the fstream
class, but they are opened in different modes i.e., infile is opened in the read mode, whereas
out file is opened in the write mode. The statement

infile >> name;
reads name string from the input disk file, and the statement

outfile << "Name: " << name << endl;
writes the same to the output disk file. The file processing is carried on until all the records are pro-
cessed. Note that the syntax for writing to the disk file resembles that used for writing to the console.

18.11 Random Access to aFile

The program fio.cpp handles files using the fstream class. It uses fstream to perform both
input-output operation on the test.del file. Since, the class st ream is derived from iostream,
both input and output can be done on the same stream (same file in this case).

692 Mastering C++

// fio.epp: Input and output operations on file, random access
#include <iostream.h>
#include <fstream.h>
#define READ_SIZE 6
void main{()
{
char reader|[READ_SIZE + 1 J;
// fstream constructor, open in binary input and output mode
fstream fstr("test.del", ios::binary|ios::in|ios::out);
// Write the numbers 0 to 9 to file
for(int 1 = 0; i < 10; i++)
fstr << 1i;
// Set the write (put) pointer.
fstr.seekp(2);
fstr << "Hello";
// Set the read (get) pointer.
fstr.seekg(4);
fstr.read(reader, READ_SIZE);
reader(READ_SIZE] = 0; "/ end of string
cout << reader << endl;

}

Run
110789

Note that an instance of £st ream has two file pointers associated with it: a get pointer used while
reading, and a put file pointer used while writing. The statement
fstr.seekp(2);
sets the put pointer to an offset 2.

The program first writes ASCII codes of the digits 0 to 9 to the file test . del, moves the put
pointer by an offset 2 from the beginning of the file and the overwrites the numbers 3 through 6 with the
string “Hello™. It then reads 6 characters from the offset 4 into the array reader. The last line of the
program will display these 6 characters, which will be 110789. After all writes are completed, the
contents of the file test.del will be: 01Hello0789

The facility for direct file processing is essential in database applications. They perform extensive
dataread, write, update, and search activities. These actions require movement of the file pointers (get
or put) from one position to another. This can be easily performed by using the seek (), read(), and
write() functions.

The location at which the m" object is stored can be computed using a relation:
location = m * sizeof{ object)
This specifies the offset at which the object is stored in a file. It can be used to manipulate the m™ object
by using the read() or write() functions.

The program direct . cpp illustrates the mechanism of updating a file by random access. It uses
the file person. txt to store objects and then these objects can be updated if necessary. The file
pointers get and put are positioned based on the object to be accessed.

Chapter 18: Streams Computation with Files

/ / direct.cpp: accessing objects randomly
#include <fstream.h>
#include <ctype.h> // For toupper
#include <string.h> // For strlen
#define MAXNAME 40
class Person
{
private:
char name[MAXNAME];
int age;
public:
// this function writes the class’s data members to the file
void write(ofstream &os)
{
os.write(name, strlen(name));
os << ends;
os.write((char*)&age, sizeof(age));

}
// this function reads the class’s date member from the file.

// It returns nonzero if no errors were encountered while reading.

int read(ifstream &is)
{
is.get(name, MAXNAME, 0);
name[is.gcount() J = 0;
is.ignore(1); // ignore the NULL terminator in the file.
is.read((char*)&age, sizeof(age) };
return is.good();
}
// stream operator, << overloading
friend ostream & operator << (ostream &os, Person &b)
// stream operator >> operator overloading
friend istream &operator >> (istream &is, Person-&b);
// output file stream operator overloading
}i
istream &operator >> (istream &is, Person &b)
{
cout << "Name: ";
is >> ws; // flush input buffer
is.get(b.name, MAXNAME) ;
cout << "Age : ";
is >> ws >> b.age;
return is;
}
ostream &operator << (ostream &oOs, Person &b)
{
os << "Name: " << b.name << endl;
os << "Age : " << b.age << endl;
return o0s;

693

694 ‘Mastering C++

void main ()
{
Person p_obj;
int count, obj_id;
cout << "Database Creation..." << endl;
// open a file in binary mode and write objects to it
ofstream ofile("person.dat*, ios::trunc|ios::binary);
count = 0;
char ch;
do
{
cout << "Enter Object " << count << " details..." << endl;
cin >> p_obj;
count = count + 1;
// write object to the output file
ofile.write((char *) &p_obj, sizeof({ p_obj));
cout << "Another ? ";
cin >> ch;
} while(toupper(ch) == 'Y' });
ofile.close();
// Output loop, display file content
fstream iofile("person.dat*, ios::binary|ios::in|ios::out);
cout << "Database Access..." << endl;
while(1)
{
cout << "Enter the object number to be accessed <-1 to end>: *;
cin >> obj_id;
if(obj_id < 0 || obj_id >= count)
break;
int location = obj_id * sizeof(p_obj);
iofile.seekg(location, ios::beg);
iofile.read((char *) &p_obj, sizeof(p_obj));
cout << p_obj;
cout << "Wants to Modify ? *;
cin >> ch;
if(ch == 'y' || ch == 'Y')
{
cin >> p_obj;
// update the object in the file
iofile.seekp(location, ios::beg);
iofile.write((char *) &p_obj, sizeof(p_obj));

}
iofile.close();
}
Run

Database Creation...
Enter Object 0 details...
Name: Rajkumar

Age : 25

Chapter 18: Streams Computation with Files 695

Another ? y

Enter Object 1 details...

Name: Tejaswi

Age : 20

Another ? ¥

Enter Object 2 détails...

Name: Kalpana

Age : 15

Another ? nn

Database Access...

Enter the object number to be accessed <-1 to end>: 0
Name: Rajkumar

Age : 25

Wants to Modify ? n

Enter the object number to be accessed <-1 to end>:
Name: Tejaswi

Age : 20

Wants to Modify ? y

Name: Tejaswi

Age : 5

Enter the object number to be accessed <-1 to end>: 1
Name: Tejaswi

Age : 5

Wants to Modify ? n

Enter- the object number to be accessed <-1 to end>: -1

=

In the program, initially a database is created without supporting its modification during creation.
After creating the database file, the object iofile of class fstream is created using the statement,

fstream iofile("person.dat*, ios::binary|ios::in|ios::out);

It connects the file person.dat to the stream based object and permits both the read and write
operations to be performed on the same file.

To read objects randomly, there must be a mechanism for converting object-id (object request) into
the location at which it is stored. This is achieved by computing the location of the object storage using
the relation :

int location = obj_id * sizeof(p_obj)i
‘and put pointer is set to this by:

jofile.seekg(location, ios::beg);
and the statement:

jofile.read((char *) &p_obj, sizeof(p_obj)});
reads the file and stores into the object.

18.12 In-Memory Buffers and Data Formatting

The C’s /O system has two functions: sscanf () and sprint£() (whose prototypes appear in the
stdio. h header file) for formatted /O with memory buffers. The function sscant performs format-
ted input from a character array, and sprintf does formatted output to a character array. These
functions are normally used while displaying numbers in graphical environments (like BGI and Win-
dows) where the output functions accept only strings.

696 Mastering C++

C++ supports stream classes (declared in strstrea.h): istrstream (handling input of data
from the array), ostrstream (handling output of data to the array), and strstream (transfer of
data both ways) to handle character arrays in memory. In many cases, these streams may be easier to
use than ordinary strings, since their buffers are dynamic. These streams can be used with stream
operators, manipulators, etc., in the same way as the file streams. But their constructors have different
specification. The program cmdadd. cpp illustrates the use of istrstream class in creating stream
buffers and using it for extracting the data. It adds all the numbers passed as command line arguments.

// cmdadd.cpp: addition of numbers passed through command line
#include <strstrea.h>
void main(int argc, char *argv([])
{
int 1 = 1;
-long num, sum=0;
if(argec < 2)
{
cout << "Usage: cmdadd list_of_numbers_to_be_added";
return;
}
while(--argc)
{
istrstream arg(argv{ i]);
arg >> num;
sum += num;

i++;
}
cout << sum << endl;
}
Run
At System prompt: cmdadd 1 2 3
6

In main’), the statement
istrstream arg(argv[i 1);
creates an object of the class istrstreamand connects the same to a buffer. This object can now be
used to read data from the associated buffer. The statement
arg >> num;
extracts the data value and stores into the variable num. This method of accessing data is similar to
performing I/O with the console and a file.

18.13 Error Handling During File Manipulations

In the real time environment, many users access different files without any predefined access pattern.
The following are the different situations that can arise while manipulating a file:

+ Attempting to open a non-existent file in read-mode.
+ Trying to open a read-only marked file in write-mode.
« Trying to open a file with invalid name.

Chapter 18: Streams Computation with Files 697

+ Attempting to read beyond the end-of-the-file.

«+ Sufficient disk space is not available while writing to a file.
« Attempting to manipulate an unopened file.

«» Stream object created but not connected to a file.

+ Media (disk) errors reading/writing a file.

Such conditions must be detected while manipulating files and appropriate action should be taken to
achieve consistent access to files.

Every stream (ifstream, ofstream, and f£stream) has a state associated with it. Errors and
nonstandard conditions are handled by sctting and testing this state appropriately. The stream status
variable and information recorded by its bits is shown in Figure 18.11.

X X X X
R
Unused
L——» end-of-file

——— R/W fail
» invalid operation
— hard error

Figure 18.11: State variable format

The ios class supports several functions to access the status recorded in the data member
io_state. These functions and the meaning of their return values are shown in Table 18.5.

Function Meaning of Return Value

eof () TRUE, (non-zero) if EOF encountered while reading
FALSE, (zero) otherwise

fail () TRUE, if read or write operation has failed; FALSE, otherwise

bad () TRUE, invalid opcration is attempted or any unrecoverable errors
FALSE, otherwise however, it can be recovered

good () TRUE, if operation is successful i.e., all the above are functions
that return false.. if file.good () is true, everything is fine and
can proceed for further processing

rdstate () returns the status-state data member of the class ios

clear () clear error states and further operations can be attempted

Table 18.5: Error handling functions and their return values

The following examples illustrates the mechanism for checking errors during file operations:

1. Opening a non-cxistent file in read mode:
ifstream infile("myfile.dat”):

if(!'infile)

698 Mastering C++

{
// file does not exist

}
2. Open fail: opening read-only marked file

ofstream outfile("myfile.dat");
if(tinfile) // or if(infile.bad())
{
// file already exist and marked as read only

}
3. Detecting end of file

while(!infile.eof()) // processes until end-of-file is reached
{

// process file
}

4. Read fail

infile.read(...);
if(infile.bad())
{
// file cannot be processed further
}
5. Invalid filename
infile.open("|-*");
if(tinfile)
{

// invalid file name
}
6. Processing unopened file
infile.read(..); // read file
if(infile.fail())
{

// file is not opened

}

The program outfile.cpp illustrates the trapping of all possible errors, which may be encoun-
tered during file processing.

// outfile.cpp: writes all the input into the file 'sample.out’
#include <fstream.h>
#include <process.h>
#include <string.h>
void main()
{
char buff[80 };
ofstream outfile; // output file
outfile.open("sample.out"); // open in output mode
if(outfile.bad()) // open fail
{
cout << "Error: sample.out unable to open";
exit(1);

Chapter 18: Streams Computation with Files 699

1
// loop until input = "end"
while(1)
{
cin.getline(buff, 80); // read a line from keyboard
if(stremp(buff, "end") == 0)
break;
outfile << buff << endl; // write to output file
if(outfile.fail())
{
cout << "write operation fail";
exit(1);

}
}

outfile.close():

}

Run

Q0P is good
C++ is OOP

C++ is good
end

Note: On execution of the above program, the file sample.out contains the following information
entered through the standard input device, keyboard:

OOP is good

C++ is OOP

C++ is good

In main (), the statement

ofstream outfile; // output file

creates the object outfile and the statement
outfile.open("sample.out"); // open in output mode

opens the file sample . out in the output mode. The statement
if(outfile.bad()) // open fail

checks for the status of the file open command. If open fails, it returns 1, otherwise 0. The statement
outfile << buff << endl; // write to output file

writes the contents of the variable buf £ followed by a new-line character to the file. The statement
if (outfile.fail())

checks for the status of the preceding write operation.

18.14 Filter Utilities

The operating system provides many tools for browsing through the contents of the file, copying one
file to another, printing files on the printer, and beautifying the content of files. Such utilities are called
filter utilities because of their nature of filtering input files and presenting them in an appealing form. For
instance, the more command (DOS or UNIX) display the contents of the files page by page on the

700 Mastering C++

console. Using the services of C++ streams such filter utilities can be built. Filter utilities are designed
usually to accept the name of a file to be processed through the command-line arguments.

The command-line arguments are entered by the user at the shell prompt, and are delimited by white-
space. (The first argument is a name of the command; filename containing the executable program.)
These arguments are passed to the main () function of the program with the following syntax:

main(int argc, char *argv(])
The first argument argc represents the argument count, whereas, the second argument is a pointer to
an argument vector. For instance, when the following command is issued at the shell prompt,

copy boy.exe girl.exe
the value of argc and argv are as follows:

argc = 3

argv([0] = copy
argv(1l] = boy.exe
argv(2] = girl.exe

The program cp . cpp is designed as a filter utility. It copies the source file into another destination
file in the disk. The names of the source and destination files have to passed through the command line
arguments. It can be used to copy both the ASCII and BINARY files.

// CP.CPP: Copy a file to another file
#include <iostream.h>
#include <fstream.h>
#include <conio.h>
#include <process.h>
const int BUFFSIZE = 512;
int CopyFile(char *SourceFile, char *DestinationFile)
{
fstream infile; // source file
fstream outfile; // destination file
char buff[BUFFSIZE + 1];
// Open source file for reading
infile.open(SourceFile, ios::in | ios::binary);
if(infile.fail())
{
cout << "Error: " << SourceFile << * non-existent*;
return 1; // no input file
}
outfile.open(DestinationFile, ios::out | ios::binary);
if(outfile.fail())
{
cout << "Error: " << DestinationFile << " unable to open*;
return 2; // cannot be written to a destination file
}
while(!infile.eof ())
{
infile.read((char *) buff, BUFFSIZE)Y
outfile.write((char *) buff, infile.gcount());
if(infile.gcount() < BUFFSIZE)
break;
}
infile.close();

